Post-transcriptional regulation of endothelial nitric-oxide synthase by an overlapping antisense mRNA transcript.
نویسندگان
چکیده
Endothelial nitric-oxide synthase (eNOS) mRNA levels are abnormal in diseases of the cardiovascular system, but changes in gene expression cannot be accounted for by transcription alone. We found evidence for the existence of an antisense mRNA (sONE) that is derived from a transcription unit (NOS3AS) on the opposite DNA strand from which the human eNOS (NOS3) mRNA is transcribed at human chromosome 7q36. The genes are oriented in a tail-to-tail configuration, and the mRNAs encoding sONE and eNOS are complementary for 662 nucleotides. The mRNA for sONE could be detected in a variety of cell types, both in vivo and in vitro, but not vascular endothelial cells. In contrast, expression of eNOS is highly restricted to vascular endothelium. Most surprisingly, interrogation of transcriptional events across NOS3/NOS3AS genomic regions, using single- and double-stranded probes for nuclear run-off analyses and chromatin immunoprecipitation-based assessments of RNA polymerase II distribution, indicated that NOS3 and NOS3AS gene transcription did not correlate with steady-state mRNA levels. We found strong evidence supporting a role for NOS3AS in the post-transcriptional regulation of NOS3 expression. RNA interference-mediated inhibition of sONE expression in vascular smooth muscle cells increased eNOS expression. Overexpression of sONE in endothelial cells blunted eNOS expression. Finally, the histone deacetylase inhibitor trichostatin A is known to regulate the expression of eNOS via a post-transcriptional mechanism. We found that trichostatin A treatment of vascular endothelial cells increased expression of sONE mRNA levels prior to the observed decrease in eNOS mRNA expression. Taken together, these results indicate that an antisense mRNA (sONE) participates in the post-transcriptional regulation of eNOS and provide a newer model for endothelial cell-specific gene expression.
منابع مشابه
EXPRESSION OF INDUCIBLE NITRIC OXIDE SYNTHASE GENE (iNOS) STIMULATED BY HYDROGEN PEROXIDE IN HUMAN ENDOTHELIAL CELLS
Inducible nitric oxide synthase (iNOS) gene expresses a calcium calmudolin-independent enzyme which can catalyse NO production from L-arginine. The induction of iNOS activity has been demonstrated in a wide variety of cell types under stimulation with cytokines and lipopoly saccharide (LPS). Previous studies indicated that all nitric oxide synthases (NOS) activated in human umbilical vein endot...
متن کاملCharacterization of natural antisense transcripts expressed from interleukin 1β-inducible genes in rat hepatocytes
Background: Natural antisense transcripts (asRNAs) are transcribed from many genes in various species. Recently, we found that asRNAs were transcribed from the rat and mouse genes encoding inducible nitric oxide synthase (iNOS), which catalyzes the production of the essential inflammatory mediator nitric oxide. The iNOS asRNA corresponds to the 3’-untranslated region (3’UTR) of the iNOS mRNA. W...
متن کاملpyroGlu-Leu inhibits the induction of inducible nitric oxide synthase in interleukin-1β-stimulated primary cultured rat hepatocytes.
Pyroglutamyl leucine (pyroGlu-Leu), which is a peptide isolated from wheat gluten hydrolysate, has been reported to be a hepatoprotective compound in acute liver failure. In inflamed liver, proinflammatory cytokines including interleukin (IL)-1β and tumor necrosis factor (TNF)-α stimulate the induction of inducible nitric oxide synthase (iNOS). Excess production of nitric oxide (NO) by iNOS is ...
متن کاملTranscriptional and posttranscriptional regulation of endothelial nitric oxide synthase expression.
The ability of the endothelium to produce nitric oxide is essential to maintenance of vascular homeostasis; disturbance of this ability is a major contributor to the pathogenesis of vascular disease. In vivo studies have demonstrated that expression of endothelial nitric oxide synthase (eNOS) is vital to endothelial function and have led to the understanding that eNOS expression is subject to m...
متن کاملVascular senescence and ageing: a role for the MEOX proteins in promoting endothelial dysfunction.
In the vascular system, ageing is accompanied by the accrual of senescent cells and is associated with an increased risk of vascular disease. Endothelial cell (EC) dysfunction is a hallmark of vascular disease and is characterized by decreased angiogenic potential, reduced nitric oxide bioavailability, impaired vasodilation, increased production of ROS, and enhanced inflammation. In ECs, the ma...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- The Journal of biological chemistry
دوره 279 36 شماره
صفحات -
تاریخ انتشار 2004